Usage
is_sharing(
...,
group_key = c("SubjectID", "CellMarker", "Tissue", "TimePoint"),
group_keys = NULL,
n_comp = 2,
is_count = TRUE,
relative_is_sharing = TRUE,
minimal = TRUE,
include_self_comp = FALSE,
keep_genomic_coord = FALSE,
table_for_venn = FALSE
)
Arguments
- ...
One or more integration matrices
- group_key
Character vector of column names which identify a single group. An associated group id will be derived by concatenating the values of these fields, separated by "_"
- group_keys
A list of keys for asymmetric grouping. If not NULL the argument
group_key
is ignored- n_comp
Number of comparisons to compute. This argument is relevant only if provided a single data frame and a single key.
- is_count
Logical, if
TRUE
returns also the count of IS for each group and the count for the union set- relative_is_sharing
Logical, if
TRUE
also returns the relative sharing.- minimal
Compute only combinations instead of all possible permutations? If
TRUE
saves time and excludes redundant comparisons.- include_self_comp
Include comparisons with the same group?
- keep_genomic_coord
If
TRUE
keeps the genomic coordinates of the shared integration sites in a dedicated column (as a nested table)- table_for_venn
Add column with truth tables for venn plots?
Details
An integration site is always identified by the combination of fields in
mandatory_IS_vars()
, thus these columns must be present
in the input(s).
The function accepts multiple inputs for different scenarios, please refer
to the vignette
vignette("workflow_start", package = "ISAnalytics")
for a more in-depth explanation.
Output
The function outputs a single data frame containing all requested comparisons and optionally individual group counts, genomic coordinates of the shared integration sites and truth tables for plotting venn diagrams.
Plotting sharing
The sharing data obtained can be easily plotted in a heatmap via the
function sharing_heatmap
or via the function
sharing_venn
Required tags
The function will explicitly check for the presence of these tags:
All columns declared in
mandatory_IS_vars()
See also
Other Analysis functions:
CIS_grubbs()
,
HSC_population_size_estimate()
,
compute_abundance()
,
cumulative_is()
,
gene_frequency_fisher()
,
iss_source()
,
sample_statistics()
,
top_integrations()
,
top_targeted_genes()
Examples
data("integration_matrices", package = "ISAnalytics")
data("association_file", package = "ISAnalytics")
aggreg <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
value_cols = c("seqCount", "fragmentEstimate")
)
sharing <- is_sharing(aggreg)
sharing
#> # A tibble: 190 × 9
#> g1 g2 shared count_g1 count_g2 count_union on_g1 on_g2 on_union
#> <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl>
#> 1 PT001_MNC_BM… PT00… 21 54 114 147 38.9 18.4 14.3
#> 2 PT001_MNC_BM… PT00… 24 54 59 89 44.4 40.7 27.0
#> 3 PT001_MNC_BM… PT00… 15 54 89 128 27.8 16.9 11.7
#> 4 PT001_MNC_BM… PT00… 21 54 78 111 38.9 26.9 18.9
#> 5 PT001_MNC_BM… PT00… 7 54 28 75 13.0 25 9.33
#> 6 PT001_MNC_BM… PT00… 8 54 59 105 14.8 13.6 7.62
#> 7 PT001_MNC_BM… PT00… 20 54 48 82 37.0 41.7 24.4
#> 8 PT001_MNC_BM… PT00… 4 54 29 79 7.41 13.8 5.06
#> 9 PT001_MNC_BM… PT00… 15 54 43 82 27.8 34.9 18.3
#> 10 PT001_MNC_BM… PT00… 0 54 98 152 0 0 0
#> # ℹ 180 more rows